Tuesday 12 June 2018

Simulation for grid transmission, distribution.

In California, utility companies are mandated to get at least half of their power from renewable resources, such as solar and wind, by 2030. Credit: Lawrence Livermore National Laboratory Read more at: https://phys.org/news/2018-06-simulation-grid-transmission.html#jCp
Renewable energy is on the rise, especially in California, where utility companies are mandated to get at least half of their power from renewable resources, such as solar and wind, by 2030. It may be a positive development for the environment, but questions linger about how electricity generated by residential solar panels and home battery storage can affect the stability of the electrical grid.

Traditionally, according to researchers, the grid industry has modeled transmission and distribution grids separately for planning and analysis—electricity historically has flowed in one direction, from transmission lines to the consumers. But as distributed energy resources (DERs) such as solar panels increasingly proliferate and are integrated into the greater grid, coupling the transmission and distribution grids together into computer models has become essential to predicting grid reliability and safety.

Developing such a co-simulation requires immense computational resources, so Lawrence Livermore National Laboratory (LLNL) scientists have kicked off a two-year project with private power management company Eaton Corporation to develop and commercialize a tool capable of performing coupled simulations of transmission and distribution grids. The Department of Energy's Technology Commercialization Fund (TCF) is backing the project, with a goal of taking the software to market for the power industry to use.






By Jeremy Thomas.
Full story at Phys Org.





No comments:

Post a Comment